organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 4-ethoxy-2-methyl-2*H*-1,2benzothiazine-3-carboxylate 1,1-dioxide

Muhammad Zia-ur-Rehman,^a Jamil Anwar Choudary,^b Mark R. J. Elsegood,^c Noshin Akbar^d* and Hamid Latif Siddiqui^b

^aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, ^bInstitute of Chemistry, University of The Punjab, Lahore 54590, Pakistan, ^cChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and ^dDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan

Correspondence e-mail: noshinakbar@yahoo.com

Received 8 July 2008; accepted 9 July 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.097; data-to-parameter ratio = 22.1.

In the crystal structure of the title compound, $C_{13}H_{15}NO_5S$, the molecules exhibit weak $S=O\cdots H-C$ and $C=O\cdots H-C$ intermolecular interactions and arrange themselves into centrosymmetric dimers by means of π - π interactions (ring centroids are separated by 3.619 Å, while the closest $C\cdots C$ contacts are 3.514 Å). 1,2-Benzothiazines of this kind have a range of biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis.

Related literature

For related literature on benzothiazines, see: Ahmad *et al.* (2008); Bihovsky *et al.* (2004); Fabiola *et al.* (1998); Golič *et al.* (1987); Kojić-Prodić & Ružić-Toroš (1982); Lombardino *et al.* (1971); Reck *et al.* (1988); Zia-ur-Rehman *et al.* (2005, 2006, 2007).

Experimental

Crystal data	
C ₁₃ H ₁₅ NO ₅ S	a = 7.9810 (4) Å
$M_r = 297.32$	b = 8.1215 (4) Å
Triclinic, P1	c = 10.8173 (6) Å

$\alpha = 89.4783 \ (7)^{\circ}$	
$\beta = 79.5124 \ (8)^{\circ}$	
$\gamma = 79.3434 \ (7)^{\circ}$	
V = 677.33 (6) Å ³	
Z = 2	

Data collection

Bruker APEXII CCD	8153 measured reflections
diffractometer	4069 independent reflections
Absorption correction: multi-scan	3678 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2007)	$R_{\rm int} = 0.014$
$T_{\min} = 0.867, \ T_{\max} = 0.975$	
Refinement	

Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$

 $0.57 \times 0.17 \times 0.10$ mm

T = 150 (2) K

 $R[F^2 > 2\sigma(F^2)] = 0.033$ 184 parameters $wR(F^2) = 0.096$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.47$ e Å $^{-3}$ 4069 reflections $\Delta \rho_{min} = -0.34$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

	D 11	TT 4	D 4	
$D - H \cdots A$	D-H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C5-H5\cdots O2^{i}$	0.95	2.51	3.2726 (13)	137
$C13-H13A\cdots O5^{i}$	0.98	2.58	3.3715 (15)	138
Symmetry code: (i) x y	- 1 -			

Symmetry code: (i) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

We are grateful to PCSIR Laboratories Complex, Lahore, for the provision of necessary chemicals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2743).

References

- Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.
- Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). *Bioorg. Med. Chem. Lett.* **14**, 1035–1038.
- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.
- Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.
- Golič, L. & Leban, I. (1987). Acta Cryst. C43, 280-282.
- Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948-2951.
- Lombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem. 14, 1171–1175.
- Reck, G., Dietz, G., Laban, G., Gunter, W., Bannier, G. & Hohne, E. (1988). *Pharmazie*, **43**, 477–481.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zia-ur-Rehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1171–1175.
- Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). *Chem. Pharm. Bull.* 54, 1175–1178.
- Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, 04215–04216.

supplementary materials

Acta Cryst. (2008). E64, o1508 [doi:10.1107/S1600536808021363]

Methyl 4-ethoxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide

M. Zia-ur-Rehman, J. A. Choudary, M. R. J. Elsegood, N. Akbar and H. Latif Siddiqui

Comment

1,2-Benzothiazine 1,1-dioxides are heterocyclic compounds with numerous types of biological activity reported. For example, some are found useful as medicaments in the treatment of inflammation and rheumatoid arthritis (Lombardino *et al.*, 1971). Other 1,2-benzothiazine 1,1-dioxides exhibit hyperlipidemic, anti-bacterial and Calpain I inhibition activities while they have also been found useful as endothelin receptor antagonists (Bihovsky *et al.*, 2004). In continuation to our ongoing work on the synthesis of benzothiazine 1,1-dioxides (Zia-ur-Rehman *et al.*, 2005, 2006, 2007; Ahmad *et al.*, 2008), we herein report the synthesis and crystal structure of the title compound, (I).

In (I), the thiazine ring exhibits a distorted half-chair conformation with S1/C1/C6/C7 relatively planar (within +/-0.0336 (6) Å) and N1 showing significant deviation from this plane due to its pyramidal geometry with the methyl group pointing approximately perpendicular to the plane. Compared with related molecules having no substitution at O3 [1.352 (9) Å; Golič *et al.*, 1987; 1.339 (15) Å; Kojić-Prodić & Rużić-Toroš, 1982; 1.350 (9) Å; Reck *et al.*, 1988; 1.336 (2) Å; Fabiola *et al.*, 1998], C9–O4 in (I) is found to be shorter due to the absence of hydrogen bonding at O4. Each molecule of (I) is linked to its neighbours through inter-molecular C-H···S and C-H···O interactions giving rise to chains of molecules parallel to *b* (Fig. 2). Additionally, the molecules in are linked into centro-symmetric dimers by means of π - π interactions. The ring centroids are separated by 3.619 Å, while the closest C···C contacts are between C2 and C4'', separated by 3.514 Å (symmetry operator -*x*, -*y*, 1 - *z*).

Experimental

A mixture of methyl 4-hydroxy-2-methyl-2*H*-1,2-benzothiazine-3-carboxylate 1,1-dioxide (1.33 g; 5.0 mmoles), ethyl iodide (3.90 g; 25.0 mmoles), anhydrous potassium carbonate (10.0 g) and acetonitrile (100 ml) was stirred and refluxed for a period of 7 h. After removal of acetonitrile and excess methyl iodide under vacuum, chloroform (30 ml) was added and the resultant mixture was filtered. The filtrate was washed with water to remove potassium carbonate, dried with anhydrous sodium sulfate and filtered. Slow evaporation of the solvent afforded the crystalline product. Yield:1.26 g; 77.8%; m.p.147°C.

Refinement

H atoms were placed in geometric positions (C—H distance = 0.95 Å for aryl-H and mthylene-H; 0.98 Å for methyl-H) using a riding model with rotational freedom in the case of the methyl group. U values were set to $1.2U_{eq}$ of the carrier atom (1.5U for methyl-H).

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.

Fig. 2. Packing plot showing the two unique weak H-bonds (thin dashed lines) and π - π interactions (thick dashed lines).

Methyl 4-ethoxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide

Crystal data	
C ₁₃ H ₁₅ NO ₅ S	Z = 2
$M_r = 297.32$	$F_{000} = 312$
Triclinic, PT	$D_{\rm x} = 1.458 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.9810 (4) Å	Cell parameters from 4878 reflections
b = 8.1215 (4) Å	$\theta = 2.6 - 30.5^{\circ}$
c = 10.8173 (6) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\alpha = 89.4783 \ (7)^{\circ}$	T = 150 (2) K
$\beta = 79.5124 \ (8)^{\circ}$	Block, colourless
$\gamma = 79.3434 \ (7)^{\circ}$	$0.57\times0.17\times0.10~mm$
V = 677.33 (6) Å ³	

Data collection

Bruker APEXII CCD diffractometer	4069 independent reflections
Radiation source: fine-focus sealed tube	3678 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.014$
T = 150(2) K	$\theta_{\text{max}} = 30.6^{\circ}$
ω rotation with narrow frames scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)	$h = -11 \rightarrow 11$
$T_{\min} = 0.867, \ T_{\max} = 0.975$	$k = -11 \rightarrow 11$
8153 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.096$	$w = 1/[\sigma^2(F_o^2) + (0.0555P)^2 + 0.1549P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
4069 reflections	$\Delta \rho_{max} = 0.47 \text{ e} \text{ Å}^{-3}$
184 parameters	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.37350 (11)	0.28852 (10)	0.19858 (8)	0.01854 (16)
C11	0.32384 (14)	0.38127 (14)	0.08880 (10)	0.0245 (2)
H11A	0.4141	0.3475	0.0145	0.037*
H11B	0.3107	0.5019	0.1052	0.037*
H11C	0.2137	0.3560	0.0738	0.037*
S1	0.24645 (3)	0.32872 (3)	0.33583 (2)	0.02022 (8)
O1	0.34949 (12)	0.28319 (11)	0.43054 (8)	0.02893 (18)
O2	0.15077 (12)	0.49632 (10)	0.33569 (9)	0.0320 (2)
C1	0.10979 (13)	0.18357 (12)	0.33574 (9)	0.01836 (18)
C2	-0.06595 (13)	0.22200 (14)	0.38733 (10)	0.0230 (2)
H2	-0.1177	0.3311	0.4207	0.028*
C3	-0.16426 (14)	0.09717 (16)	0.38904 (10)	0.0268 (2)
Н3	-0.2851	0.1213	0.4223	0.032*
C4	-0.08623 (15)	-0.06293 (15)	0.34218 (10)	0.0259 (2)
H4	-0.1538	-0.1483	0.3463	0.031*
C5	0.08906 (14)	-0.09988 (13)	0.28949 (10)	0.02141 (19)
H5	0.1406	-0.2099	0.2580	0.026*
C6	0.18987 (12)	0.02506 (12)	0.28280 (9)	0.01735 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C7	0.37251 (12)	-0.00786 (12)	0.21908 (9)	0.01697 (17)
O3	0.45163 (10)	-0.17111 (9)	0.19875 (7)	0.02058 (15)
C12	0.49827 (15)	-0.25298 (13)	0.31109 (10)	0.0239 (2)
H12A	0.3954	-0.2867	0.3633	0.029*
H12B	0.5423	-0.1753	0.3617	0.029*
C13	0.63614 (18)	-0.40461 (15)	0.27026 (14)	0.0356 (3)
H13A	0.5911	-0.4810	0.2207	0.053*
H13B	0.6698	-0.4619	0.3446	0.053*
H13C	0.7375	-0.3699	0.2189	0.053*
C8	0.45807 (12)	0.11773 (12)	0.17707 (9)	0.01727 (17)
C9	0.64295 (13)	0.08859 (13)	0.11182 (9)	0.01947 (18)
O4	0.72988 (11)	-0.04393 (11)	0.07302 (9)	0.0333 (2)
O5	0.70186 (10)	0.23360 (10)	0.10291 (8)	0.02397 (16)
C10	0.88320 (14)	0.21929 (15)	0.04958 (11)	0.0264 (2)
H10A	0.9526	0.1425	0.0994	0.040*
H10B	0.9156	0.3299	0.0503	0.040*
H10C	0.9047	0.1758	-0.0372	0.040*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0194 (4)	0.0142 (3)	0.0198 (4)	-0.0011 (3)	0.0003 (3)	0.0009 (3)
C11	0.0246 (5)	0.0219 (5)	0.0254 (5)	-0.0017 (4)	-0.0033 (4)	0.0062 (4)
S1	0.02258 (13)	0.01530 (12)	0.02126 (13)	-0.00367 (9)	0.00029 (9)	-0.00292 (8)
01	0.0339 (4)	0.0336 (4)	0.0221 (4)	-0.0119 (3)	-0.0065 (3)	-0.0039 (3)
O2	0.0330 (4)	0.0152 (4)	0.0405 (5)	-0.0009 (3)	0.0084 (4)	-0.0039 (3)
C1	0.0194 (4)	0.0180 (4)	0.0173 (4)	-0.0033 (3)	-0.0025 (3)	0.0017 (3)
C2	0.0203 (4)	0.0257 (5)	0.0204 (4)	-0.0009 (4)	-0.0006 (4)	0.0008 (4)
C3	0.0194 (4)	0.0379 (6)	0.0230 (5)	-0.0080 (4)	-0.0015 (4)	0.0020 (4)
C4	0.0243 (5)	0.0325 (5)	0.0246 (5)	-0.0137 (4)	-0.0058 (4)	0.0048 (4)
C5	0.0241 (5)	0.0204 (4)	0.0219 (4)	-0.0074 (4)	-0.0067 (4)	0.0027 (4)
C6	0.0184 (4)	0.0171 (4)	0.0169 (4)	-0.0035 (3)	-0.0039 (3)	0.0019 (3)
C7	0.0189 (4)	0.0143 (4)	0.0175 (4)	-0.0017 (3)	-0.0041 (3)	-0.0008 (3)
03	0.0266 (4)	0.0134 (3)	0.0204 (3)	-0.0003 (3)	-0.0040 (3)	-0.0010 (2)
C12	0.0284 (5)	0.0179 (4)	0.0251 (5)	0.0011 (4)	-0.0094 (4)	0.0004 (4)
C13	0.0396 (7)	0.0210 (5)	0.0446 (7)	0.0095 (5)	-0.0183 (6)	-0.0072 (5)
C8	0.0171 (4)	0.0153 (4)	0.0185 (4)	-0.0014 (3)	-0.0023 (3)	-0.0010 (3)
C9	0.0186 (4)	0.0202 (4)	0.0190 (4)	-0.0033 (3)	-0.0022 (3)	-0.0012 (3)
04	0.0237 (4)	0.0231 (4)	0.0472 (5)	-0.0014 (3)	0.0062 (4)	-0.0086 (4)
05	0.0175 (3)	0.0207 (3)	0.0323 (4)	-0.0045 (3)	0.0003 (3)	-0.0009 (3)
C10	0.0176 (4)	0.0304 (5)	0.0299 (5)	-0.0059(4)	0.0002 (4)	0.0026 (4)

Geometric parameters (Å, °)

N1—C8	1.4270 (12)	С5—Н5	0.9500
N1—C11	1.4762 (13)	C6—C7	1.4713 (13)
N1—S1	1.6363 (9)	С7—С8	1.3599 (13)
C11—H11A	0.9800	С7—О3	1.3602 (11)
C11—H11B	0.9800	O3—C12	1.4546 (12)

C11—H11C	0.9800	C12—C13	1.5014 (15)
S1—O1	1.4318 (9)	C12—H12A	0.9900
S1—O2	1.4324 (8)	C12—H12B	0.9900
S1—C1	1.7479 (10)	C13—H13A	0.9800
C1—C2	1.3901 (14)	C13—H13B	0.9800
C1—C6	1.4035 (13)	C13—H13C	0.9800
С2—С3	1.3900 (16)	C8—C9	1.4920 (13)
С2—Н2	0.9500	С9—О4	1.2008 (13)
C3—C4	1.3904 (17)	C9—O5	1.3429 (12)
С3—Н3	0.9500	O5—C10	1.4409 (12)
C4—C5	1.3891 (15)	C10—H10A	0.9800
С4—Н4	0.9500	C10—H10B	0.9800
C5—C6	1.4006 (14)	C10—H10C	0.9800
C8—N1—C11	116.99 (8)	C5—C6—C7	120.92 (9)
C8—N1—S1	114.71 (6)	C1—C6—C7	121.18 (9)
C11—N1—S1	118.75 (7)	C8—C7—O3	120.74 (9)
N1—C11—H11A	109.5	C8—C7—C6	122.18 (9)
N1—C11—H11B	109.5	O3—C7—C6	117.02 (8)
H11A—C11—H11B	109.5	C7 - O3 - C12	113.59 (7)
N1—C11—H11C	109.5	03-C12-C13	107 98 (9)
H11A—C11—H11C	109.5	03-C12-H12A	110.1
H11B-C11-H11C	109.5	C13—C12—H12A	110.1
01 - 81 - 02	119 30 (6)	03-C12-H12B	110.1
01 - 81 - N1	107.81 (5)	C13 - C12 - H12B	110.1
02 - 81 - N1	108.08 (5)	H12A - C12 - H12B	108.4
01 - 81 - C1	108.19(5)	C12-C13-H13A	109.5
02 - 81 - C1	110 56 (5)	C12—C13—H13B	109.5
$N1 \rightarrow S1 \rightarrow C1$	101 38 (5)	H13A—C13—H13B	109.5
C_{2} C_{1} C_{6}	122 35 (9)	C12-C13-H13C	109.5
$C_2 = C_1 = S_1$	122.00(8)	H_{13A} $-C_{13}$ $-H_{13C}$	109.5
C_{6}	115 63 (7)	H13B-C13-H13C	109.5
C_{3} C_{2} C_{1}	118.52 (10)	C7 - C8 - N1	120 24 (9)
C_{3} C_{2} H_{2}	120.7	C7 - C8 - C9	123.51(9)
C1 - C2 - H2	120.7	N1 - C8 - C9	116 22 (8)
C_{2}^{-} C_{3}^{-} C_{4}^{-}	120.16 (10)	04 - 09 - 05	123 71 (9)
$C_2 = C_3 = C_1$	119.9	04 - 09 - 03	126 14 (9)
C4 - C3 - H3	119.9	05 - 09 - 08	110.15 (8)
$C_{5} - C_{4} - C_{3}$	120.97 (10)	C_{9} C_{5} C_{10}	115 19 (8)
C_{5} C_{4} H_{4}	119.5	05-C10-H104	109.5
C_3 C_4 H_4	119.5	05-C10-H10B	109.5
C4 - C5 - C6	120.01 (10)	H_{10A} $-C_{10}$ $-H_{10B}$	109.5
C4_C5_H5	120.01 (10)	05_C10_H10C	109.5
C6_C5_H5	120.0	H_{10A} $-C_{10}$ $-H_{10C}$	109.5
$C_{5} - C_{6} - C_{1}$	117.87 (9)	H10B-C10-H10C	109.5
	50.01.(0)		(72 (12)
$V_{0} = N_{1} = S_{1} = O_{1}$	58.91 (8)	SI-UI-U6-U/	-6.73(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-155./9 (8)	C5 - C6 - C7 - C8	159.51 (10)
$C_8 - N_1 - S_1 - O_2$	-1/0.89 (7)	C1 - C6 - C' - C8	-18.73 (14)
C11 - N1 - S1 - O2	-25.58 (9)	C5—C6—C7—O3	-17.78 (13)

supplementary materials

C8—N1—S1—C1	-54.62 (8)	C1—C6—C7—O3	163.98 (9)
C11—N1—S1—C1	90.69 (8)	C8—C7—O3—C12	106.82 (11)
O1—S1—C1—C2	104.51 (9)	C6—C7—O3—C12	-75.85 (11)
O2—S1—C1—C2	-27.82 (10)	C7—O3—C12—C13	-159.92 (9)
N1—S1—C1—C2	-142.26 (9)	O3—C7—C8—N1	179.78 (8)
O1—S1—C1—C6	-74.15 (9)	C6—C7—C8—N1	2.59 (14)
O2—S1—C1—C6	153.53 (8)	O3—C7—C8—C9	-2.63 (15)
N1—S1—C1—C6	39.09 (8)	C6—C7—C8—C9	-179.82 (9)
C6—C1—C2—C3	1.63 (15)	C11—N1—C8—C7	-107.70 (11)
S1—C1—C2—C3	-176.93 (8)	S1—N1—C8—C7	38.24 (12)
C1—C2—C3—C4	1.25 (16)	C11—N1—C8—C9	74.55 (11)
C2—C3—C4—C5	-2.02 (17)	S1—N1—C8—C9	-139.52 (8)
C3—C4—C5—C6	-0.10 (16)	C7—C8—C9—O4	11.14 (17)
C4—C5—C6—C1	2.85 (15)	N1-C8-C9-O4	-171.18 (10)
C4—C5—C6—C7	-175.45 (9)	C7—C8—C9—O5	-168.23 (9)
C2-C1-C6-C5	-3.67 (15)	N1—C8—C9—O5	9.45 (12)
S1—C1—C6—C5	174.98 (7)	O4—C9—O5—C10	-3.71 (15)
C2-C1-C6-C7	174.62 (9)	C8—C9—O5—C10	175.68 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C5—H5…O2 ⁱ	0.95	2.51	3.2726 (13)	137
C13—H13A···O5 ⁱ	0.98	2.58	3.3715 (15)	138
Symmetry codes: (i) $x, y=1, z$.				

